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1. Background 

MuSES is an acronym for the Multi-Service Electro-Optical Signature Code.  While this code is 
relatively new in Department of Defense (DOD) communities, its predecessors, most notably, 
the Physically Reasonable Infrared Signature Model on which it is based, have a long and 
successful history of use in the thermal infrared (IR) modeling of ground vehicles and targets.  
The code grew mainly out of the need for integrating the many legacy codes and also to make 
use of the new computing and software programming techniques such as configuration 
management, etc. 

While there are many sponsors from the DOD service agencies from the U.S. Army side, it is the 
U.S. Army Tank-automotive and Armaments Command Tank-Automotive Research, 
Development, and Engineering Center which has sponsored the development of the code for a 
number of years and is currently conducting the validation and verification of version 6.0 of the 
code.  A commercial version of the code, RADTHERM, is widely used (sans radiation) in 
automotive industries.  Both MuSES and RADTHERM are being developed commercially by 
ThermoAnalytics of Calumet, MI.  Help in building and running MuSES models is available.1–3 

2. Parallelization Approach 

For the present work, a version of the source code was obtained from ThermoAnalytics, Inc.  
The present work was devoted to making the MuSES code run on parallel computers.  This was 
achieved by using OpenMP.∗  OpenMP is a shared-memory programming standard with parallel 
regions of computation explicitly identified.  This calls for implicit messaging and explicit 
synchronization.  It usually runs with one master process and many slave computing processes 
and is best suited to run on shared-memory architectures such as SGI Origin 3000* computers.  
Profiling the source code on an application of interest usually identifies subroutines and code 
segments that are good candidates for parallelization with OpenMP threads.  Only a limited 
amount of computational scalability is generally achieved with this approach.   

The other approach that can lead to a better scalability is based on the message-passing interface 
(MPI) standard.  MPI is usually implemented with domain decomposition.  Scalability is

                                                 
1Makens, C.; Wood, B.  MuSES 6.0 User’s Manual; ThermoAnalytics, Inc.:  Calumet, MI, 2001. 
2MuSES 6.0 Training Manual; ThermoAnalytics, Inc.:  Calumet, MI, 2000. 
3Gonda, T.; Polsen, E.; Jones, J.; Sass, D.; White, J.; Gerhardt, A.; Less, D.; Rynes, P.  A Report on the V&V of MuSES 6.0;  
draft report; U.S. Army Tank-Automotive Research, Development, and Engineering Center:  Warren, MI. 
∗OpenMP and SGI Origin 3000 are trademarks of Silicon Graphics, Inc. 
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achieved in numerical codes containing computational meshes, by partitioning the meshes into 
several submeshes or computational domains.  Each domain is assigned to a different processor.  
Elements internal to a domain are computed independently of calculations on other processors; 
elements on the interdomain boundaries are computed with neighboring processors exchanging 
the relevant information in explicit messages.  Synchronization of computations (i.e., for time 
steps, etc.) is a code writer’s responsibility.  Since MPI doesn’t require shared-memory 
architecture, code segments have to be selected with much more understanding of the 
computational algorithms in a source code rather than with simple profiler knowledge alone.   

OpenMP was thus selected for the present work because it allowed the authors to quickly start 
the parallelization process.  Using MPI would have meant more studies of the MuSES 
computational modules.  The code’s many physical processes are coupled and nonlinear.  The 
authors wanted to quickly show that a parallelization of MuSES is possible and a thorough 
application of either OpenMP or MPI would extend the thermal IR modeling problem space by 
allowing DOD to leverage its high-performance computing resources for increasing the 
throughput and lowering the wall clock time. 

Results are provided to show the efficiency achieved by the parallel code.  Results for physical 
and apparent temperatures and radiance were computed for the ZSU Quad 23 AA vehicle under 
four different paint conditions and were verified for accuracy first.  For establishing the 
scalability of the multithreaded code, results were generated from 2-, 4-, 8- and 16- multiprocessor 
runs.  Parallelization work proceeded in two phases.  The initial phase focused on a “normalization 
loop within the selective over relaxation (SOR) iteration loop.”  With this parallelization, 
reduction in the range of 30%–40% in wall clock time in the solver routines was achieved for up 
to four processors.  These results were reported by Petit et al.4  Parallelization of three additional 
loops in the “SOR iteration loop” and some work in the “ComputeRadNodeAveValues” routine 
improved the scalability to ~88% reduction in computational time with 16 processors using a test 
model case. 

3. Code Segments for Parallelization 

Parallelization by OpenMP multithreads is a gradual process.  First, candidate subroutines and 
code segments are to be determined for opportunities for parallelization from a profile of times 
spent in various subroutines, as shown in figure 1.  The “Nodal Network” solver was identified 
as a potential candidate subroutine.  This subroutine computes for 72.5% of the total time.  The 
parallelization effort, therefore, naturally focused in this area.  The flowchart for this routine 

                                                 
4Petit, G.; Valisetty, R.; Namburu, R.  Parallel MuSES for Infrared Signature Modeling of Army Vehicles and Targets.  
Presented at the 13th Annual Ground Target and Validation (GTM&V) Conference, Houghton, MI, August 2002. 



 

3 

Figure 1.  Serial MuSES solver profile. 

is provided in figure 2.  In this figure, the computational regions with parallel threads are 
indicated with a “p” in the upper right-hand corners. 

4. Parallelization Details 

Based on the code profiling performed, attention was focused on the Nodal Network solver.  It 
begins with initialization and sets up two main loops for time stepping and SOR convergence 
iteration within each time step.  Within each SOR convergence iteration loop, the following 
major computational steps are performed before evaluating the convergence criteria: 

1. Average radiation nodes computation. 

2. Partial direct solution computation loop for thermal nodes. 

3. Tri-diagonal solution computation loop for thermal nodes. 

4. Accelerated solution computation loop for thermal nodes. 

5. Normalized solution computation loop for thermal nodes. 

Steps 2–5 eventually utilize routines ComputeCondSum and ComputeQRad, which comprise the 
bulk of the computational time used in the solver.  Both of these routines are highly scalar and 
serial in nature, making them poor candidates for parallelization.  Hence, the higher-level loop 
structures which eventually call these routines became the focus of the parallelization effort.  The 
following subsections summarize the parallelization issues that were encountered and include a 
synopsis of the implemented solutions. 
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Figure 2.  Flow diagram for Nodal Network solver. 
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4.1 Load Balancing 

For the Partial-Direct, Tri-Diagonal and Accelerated solution loops, only a subset of the thermal 
nodes are processed.  For the first two cases, the original code would loop through all thermal 
nodes and check a variable in the thermal-node structure to determine if that node was defined as 
appropriate for further processing.  This logic could introduce significant load-balancing 
problems when distributing the calculations across all the thermal nodes within the loop.  This 
problem was overcome by inserting logic in the setup portion of the solver that created separate 
arrays containing a list of only those thermal nodes being used for partial-direct or tri-diagonal 
solutions, respectively.  The loop structure within the SOR convergence loop was then modified 
to loop over these new arrays instead of the entire thermal node array.  However, some load 
imbalance is still inherent in the partial-direct loop because each partial-direct thermal node can 
be associated with 2–24 other nonpartial-direct thermal nodes.  This leads to a varying amount of 
work to migrate the new thermal node values from the partial-direct thermal node to the  
nonpartial-direct thermal nodes associated with it.  For the accelerated computation case, this 
same solution had already been implemented within the code. 

4.2 Thermal Node Temperature Change Summation and Maximums 

A product of the Accelerated and Normal solution computations are summations and maximas of 
all node temperatures, temperature changes, and residuals.  The summations were implemented 
using an OpenMP Reduction clause.  Maxima of the temperature changes and residuals were 
computed for each processor in a parallel fashion in the “SolveNode” subroutine of the block and 
saved in separate elements of a shared array.  The overall maximum was determined by the 
master process after the parallel computation completed.  

4.3 Recursions Within Routines Defined in Parallel Regions 

In the “ComputeCondSums” subroutine, nonnative thermal-node temperatures were accessed on 
the read-only basis so as to preserve the recursive computations that were taking place in it.  
Also, the code provides the capability to associate multiple thermal nodes with a single radiation 
node.  Because of this capability, ComputeQRad and ComputeRadNodeAveValues update 
radiation nodes associated with multiple thermal nodes in OpenMP critical regions.  This 
requirement does have performance implications for models utilizing significant numbers of 
multiply-associated radiation nodes.  It is, therefore, recommended that the use of this feature be 
avoided as much as possible when developing models that will be used by parallel versions of 
the MuSES code. 

4.4 Maintaining Thread-Safe Code 

Two nonsolver routines, fluidtable and xydata, modified global (shared) variables that led to 
erroneous results being generated.  These routines were modified to use private copies of shared 
variables. 
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5. Verification of the Results 

For generating the results to verify the accuracy of the included OpenMP multithreads, the  
ZSU Quad 23 AA vehicle was considered.  It was assumed to be at 47.175° latitude and  
88.492° longitude, and at a 183.49-m elevation, on 19 July 1984, exposed to ambient 
atmospheric conditions for 6 hr beginning at 1300.  It was considered with four different paint 
conditions (desert tan, rust, black, and tactical glass).   

A mesh for the vehicle was available with 2339 elements, 8853 vertices, and 128 parts; it was 
selected.  Results for the physical and apparent temperatures and radiance (3–4 µm, 8–12 µm) 
were computed with both the original serial code and the code with the OpenMP multithreads in 
a 4-processor run.  Results from the two codes were identical.  Physical temperature results at 
1900 are shown in figure 3.  Results for the apparent temperature and the 8–12 µm results were 
also similarly identical, thus verifying that the OpenMP multithreads were properly inserted. 

 

Figure 3.  Physical temperature computed at 1900 by the original serial code and the parallel code. 

6. Scalability of the Results 

Scalability results are generated on three meshes.  The first mesh is the previously mentioned 
ZSU Quad 23 AA vehicle.  The other two are a car and the M2 Bradley Fighting Vehicle (BFV) 
as shown in figures 4 and 5.  The details of the three meshes are listed in table 1.   
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Figure 4.  Prius car mesh. 

 

Figure 5.  M2 BFV. 

Table 1.  Mesh details. 

Vehicle Elements Vertices Parts Thermal Nodes 
Prius car 18707 16234 33 29709 
M2 BFV 9411 9048 100 22058 
ZSU tank 2339 8853 128 18351 

 
 
Simulation times for the Prius, M2, and ZSU meshes were 1800, 36,000, and 25,200 s, 
respectively.  All were subjected to engine and other thermal fluxes and ambient conditions.  All 
three meshes were run with 1, 4, 8, and 16 processors on an SGI Origin 3000 machine in a 
shared-memory environment.  Wall clock times which are significant for users are presented in 
two sets:  (1) results in table 2 with the initial parallelization and (2) results in table 3 with the 
second set of parallelization enhancements. 
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Table 2.  Wall clock run times with the initial phase of parallelization. 

Vehicle 1 proc run 
(s) 

4 proc run 
(s) 

8 proc run 
(s) 

16 proc run 
(s) 

Prius car 16351 8335 7581 7702 
ZSU tank 187598 123179 107729 110436 
M2 BFV 256898 217163 239927 147084 

Source:  footnoted reference 4. 

Table 3.  Wall clock run times with the second phase of parallelization. 

Vehicle 1 proc run 
(s) 

4 proc run 
(s) 

8 proc run 
(s) 

16 proc run 
(s) 

Prius car 16351 4746 3825 3334 
ZSU tank 187598 63458 62665 64545 
M2 BFV 256898 95176 90516 76476 

 

With the initial phase of parallelization, the reductions were significant for the 1–4 processor 
runs.  However, reductions were not maintained from the 8–16 processor runs indicating that 
scalability was not maintained.  This is to be expected, however, since only a part of the MuSES 
code was parallelized.   

But with the second phase parallelization of the four loops, the scalability improved to an 
average 72% reduction in computation time with 16 processors, as can be seen from table 3. 

Scalability of results is also affected by how the runs were made.  Since the runs were made in a 
shared-memory environment, wall clock times are usually affected by other jobs running at the 
run time.  For a strict comparison of run times, jobs must be run in a dedicated bench mark 
queue.  This was not done, however, since such queues are not available to typical users. 

7. Future Parallelization Work 

Future efforts in this project will include porting the OpenMP parallel version of MuSES to the 
IBM SP4 platform and converting the parallel version to a message-passing (i.e., MPI) paradigm 
in order to provide more scalability and portability.
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